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1. INTRODUCTION TO DYNAMICS. LAWS OF DYNAMICS

1.1. Basic Concepts and Definitions. Dynamics is that section of mechanics,
which treats of the laws of motion of material bodies subjected to the action of forces.

The motion of bodies from a purely geometrical point of view was discussed in
kinematics. Unlike kinematics, in dynamics the motion of bodies is investigated in
connection with the acting forces and the inertia of the material bodies themselves.

The concept of force as a quantity characterizing the measure of mechanical
interaction of material bodies was introduced in the course of statics. But in statics we
treated all forces as constant, without considering the possibility of their changing with
time. In real systems, though, alongside of constant forces (gravity can generally be
regarded as an example of a constant force) a body is often subjected to the action of
variable forces whose magnitudes and directions change when the body moves.
Variable forces may be both applied (active) forces and the reactions of constraints.

Experience shows that variable forces may depend in some specific ways on
time, on the position of a body, or on its velocity (examples of dependence on time are
furnished by the tractive force of an electric locomotive whose rheostat is gradually
switched on or off, or the force causing the vibration of a foundation of a motor with a
poorly centered shaft; the Newtonian force of gravitation or the elastic force of a
spring depend on the position of a body; the resistance experienced by a body moving
through air or water depends on the velocity. In dynamics we shall deal with such
forces alongside of constant forces. The laws for the composition and resolution of
variable forces are the same as for constant forces.

The concept of inertia of bodies arises when we compare the results of the action of
an identical force on different material bodies. Experience shows that if the same force
is applied to two different bodies initially at rest and free from any other actions, in the
most general case the bodies will travel different distances and acquire different
velocities in the same interval of time.

Inertia is the property of material bodies to resist a change in their velocity under the
action of applied forces. If, for example, the velocity of one body changes slower than
that of another body subjected to the same force, the former is said to have greater
inertia, and vice-versa. The inertia of any body depends on the amount of matter it
contains.

The quantitative measure of the inertia of body, which depends on the quantity of
matter in the body, is called the mass of that body. In mechanics mass m is treated as a
scalar quantity which is positive and constant for every body. The measurement of
mass will be discussed in the following article.

In the most general case the motion of a body depends not only on its aggregate
mass and the applied forces, the nature of motion may also depend on the dimensions
of the body and the mutual position of its particles (i.e., on the distribution of its
mass).



In the initial course of dynamics, in order to neglect the influence of the dimensions
and the distribution of the mass of a body, the concept of a material point, or particle,
is introduced.

A particle i1s a material body (a body possessing mass) the size of which can be
neglected in investigating its motion.

Actually any body can be treated as a particle when the distances traveled by its
points are very great as compared with the size of the body itself. Furthermore, as will
be shown in the dynamics of systems, a body in translator motion can always be
considered as a particle of mass equal to the mass of the whole body.

Finally, the parts into which we shall mentally divide bodies in analyzing any of
their dynamic characteristics can also be treated as material points.

Obviously, the investigation of the motion of a single particle should precede the
investigation of systems of particles, and in particular of rigid bodies. Accordingly, the
course of dynamics is conventionally subdivided into particle dynamics and the
dynamics of systems of particles.

1.2. The Laws of Dynamics. The study of dynamics is based on a number of laws
generalizing the results of a wide range of experiments and observations of the
motions of bodies—Ilaws that have been verified in the long course of human history.

The First Law (the Inertia Law): a particle free from any external influences
continues in its state of rest, or of uniform rectilinear motion, except in so far as it is
compelled to change that state by impressed forces. The motion of a body not
subjected to any force is called motion under no forces, or inertial motion.

The inertia law states one of the basic properties of matter: that of being always in
motion. It establishes the equivalence, for material bodies, of the states of rest and of
motion under no forces.

A frame of reference for which the inertia law is valid is called an inertial system
(or, conventionally, a fixed system). Experience shows that, for our solar system, an
inertial frame of reference has its origin in the center of the sun and its axes pointed
towards the so-called "fixed" stars. In solving most engineering problems a sufficient
degree of accuracy is obtained by assuming any frame of reference connected with the
earth to be an inertial system.

The Second Law (the Fundamental Law of Dynamics) establishes the mode in
which the velocity of a particle changes under the action of a force. It states: the
product of the mass of a particle and the acceleration imparted to it by a force is
proportional to the acting force; the acceleration takes place in the direction of the
force. Mathematically this law is expressed by the vector equation:

mw=F . (1.1)

The second law of dynamics, like the first, is valid only for an inertial system. It can
be immediately seen from the law that the measure of the inertia of a particle is its
mass, since two different particles subjected to the action of the same force receive the
same acceleration only if their masses are equal; if their masses are different, the



particle with the larger mass (i.e., the more inert one) will receive a smaller
acceleration, and vice versa.

A set of forces acting on a particle can, as we know, be replaced by a single resultant
R equal to the geometrical sum of those forces. In this case the equation expressing
the fundamental law of dynamics acquires the form:

miw=R or mw=YF, . (1.2)

Measure of mass. Eq. (1) makes it possible to determine the mass of a body if
its acceleration in translator motion and the acting force are known. It has been
established experimentally that under the action of the force of gravitation P all
bodies falling to the earth (from a small height and in vacuum) possess the same
acceleration g, this is known as the acceleration of gravity or of free fall. Applying Eq.
(1.2) to this motion, we obtain mg = P, whence

m==— . (1.3)
8

Thus, the mass of a body is equal to its weight divided by the acceleration of gravity
g.
The Third Law (the Law of Action and Reaction) establishes the character of
mechanical interaction between material bodies. For two particles it states: fwo
particles exert on each other forces equal in magnitude and acting in opposite
directions along the straight line connecting the two particles.

It should be noted that the forces of interaction between free particles (or bodies) do
not form a balanced system, as they act on different objects.

The third law of dynamics, which establishes the character of interaction of material
particles, plays an important part in the dynamics of systems.

1.3. The Problems of Dynamics for a Free and a Constrained Particle. The
problems of dynamics for a free particle are: 1) knowing the equation of motion of a
particle, to determine the force acting on it (the first problem of dynamics), 2)
knowing the forces acting on a particle, to determine its equation of motion (the
second, or principal, problem of dynamics).

Both problems are solved with the help of Eq. (1.1) or (1.2), which express the
fundamental law of dynamics, since they give the relation between acceleration, i.e.,
the quantity characterizing the motion of a particle, and the forces acting on it.

In engineering it is often necessary to investigate constrained motions of a particle,
1.e., cases when constraints attached to a particle compel it to move along a given
fixed surface or curve.

In such cases we shall use, as in statics, the axiom of constraints, which states that
any constrained particle can be treated as a free body detached from its constraints
provided the latter is represented by their reactions N . Then the fundamental law of
dynamics for the constrained motion of a particle takes the form

miv=> F'+N, (1.4)



where F“; denotes the applied forces acting on the particle.

For constrained motion, the first problem of dynamics will usually be: to determine
the reactions of the constraints acting on a particle if the motion and applied forces are
known. The second (principal) problem of dynamics for such motion will pose two
questions: knowing the applied forces, to determine: a) the equation of motion of the
particle and b) the reaction of its constraints.

2. DIFFERENTIAL EQUATIONS OF MOTION FOR A PARTICLE AND
THEIR INTEGRATION

2.1. Rectilinear Motion of a Particle. We know from kinematics that in rectilinear
motion the velocity and acceleration of a particle are continuously directed along the
same straight line. As the direction of acceleration is coincident with the direction of
force, it follows that a free particle will move in a straight line whenever the force
acting on it is of constant direction and the velocity at the initial moment is either zero
or is collinear with the force.

Consider a particle moving rectilinearly under the action of an applied force
R =ZXF ; The position of the particle on its path is specified by its coordinate x (Fig. 1).
In this case the principal problem of dynamics is, knowing R, to find the equation of
motion of the particle x=f(z). Eq. (1.2) gives the relation between x and R. Projecting

d’x

both sides of the equation on axis Ox, we obtain mw,=R,=XF;, or as, w,_= pER

d’x 2.1

m e = ZF o - (2.1)
0 M  RJF, Eq. (2.1) is called the differential equation of
l_ S rectilinear motion of a particle. It is often more

L o _ convenient to replace Eq. (2.1) with two
Fig.1. differential
equations containing first derivatives:
d
m;:z@ (2.2)
%zvx. 2.2

Whenever the solution of a problem requires that the velocity be found as a function of
the coordinate x instead of time ¢ (or when the forces themselves depend on x), Eq.
dv, _dv, dv_dV., By (22) takes the
dt dx dt dx

(2.2") is converted to the variables x. As

form

dv
=N F,. 2.3
mvx d.x z kx ( )

The principal problem of dynamics is, essentially, to develop the equation of motion
x=f(t) for a particle from the above equations, the forces being known. For this it is




necessary to integrate the corresponding differential equation. In order to make clearer
the nature of the mathematical problem, it should be recalled that the forces in the
right side of Eq. (2.1) can depend on time ¢, on the position of the particle x, or on
the

velocity v, =%. Consequently, in the general case Eq. (2.1) is, mathematically, a

differential equation of the second order in the form
d’x dx
dt2 ZQ(I,X,E). (24)
The equation can be solved for every specific problem after determining the form of
its right-hand member, which depends on the applied forces. When Eq. (2.4) is
integrated for a given problem, the general solution will include two constants of

integration C; and C, and the general form of the solution will be
x=f(t, C;, C3). (2.5)

To solve a concrete problem, it is necessary to determine the values of the constants
C; and C,. For this we introduce the so-called initial conditions.

Investigation of any motion begins from some specified instant called the initial time
t=0, usually the moment when the motion under the action of the given forces starts.
The position occupied by a particle at the initial time is called its initial displacement,
and its velocity at that time is its initial velocity (a particle can have an initial velocity
either because at time =0 it was moving under no force or because up to time =0 it
was subjected to the action of some other forces). To solve the principal problem of
dynamics we must know, besides the applied forces, the initial conditions, i.e., the
position and velocity of the particle at the initial time.

In the case of rectilinear motion, the initial conditions are specified in the form

at t=0, x=xp, V, =Vy. (2.6)
From the initial conditions we can determine the meaning of the constants C; and
C,, and develop finally the equation of motion for the particle in the form
x = f{t, xp, vo,). (2.7)
The following simple example will explain the above. Let there be acting on a particle
a force Q of constant magnitude and direction. Then Eq. (2.2) acquires the form

As Q, = const., multiplying both members of the equation by df and integrating, we
obtain

v.=2%4c, (2.8)

m

Substituting the value of v, into Eq. (2.2'), we have

ﬂ=th+Cl.

dt m




Multiplying through by dr and integrating once again, we obtain
10, »
X =z +Ct+C,. (2.9)
This is the general solution of Eq. (2.4) for the specific problem in the form given by
Eq. (2.5).

Now let us determine the integration constants C; and C, assuming for the specific
problem the initial conditions given by (2.6). Solutions (2.8) and (2.9) must satisfy any
moment of time, including r=0. Therefore, substituting zero for ¢t in Egs. (2.8) and
(2.9), we should obtain v, and x,, instead of v, and x, i.e., we should have

vo=Cj, x9=0C;

These equations give the values of the constants C; and C,, which satisfy the
initial conditions of a given problem. Substituting these values into Eq. (2.9), we
obtain finally the relevant equation of motion in the form expressed by Eq. (2.7):

x=x0+vot+l%t2. (2.10)
2 m
We see from Eq. (2.10) that a particle subjected to a constant force
performs uniformly variable motion. This could have been foreseen; for, if Q= const.,
w= const., too. An example of this type of motion is the motion of a particle under the

force of gravity, in which case in Eq. (2.10) L g and axis Ox is directed vertically
m

down.

2.2. Curvilinear Motion of a Particle. Consider a free particle moving under the
action of forces F,, F,,... F,. Let us draw a fixed set of axes Oxyz (Fig. 2). Projecting

both members of the equation miw =Y F, on these axes, and taking into account that

_d ’x
toar’
terms of the projections on rectangular cartesian axes:

W we obtain the differential equations of curvilinear motion of a body in

d’x d’y d’z
m?:sz"’ m?:sz)’ m?:szZ' (2,11)

As the forces acting on the particle may depend on time, the displacement

or the velocity of the particle, then by analogy with Eq. (2.4), the right-hand members

of Eq. (2.11) may contain the time #, the coordinates x, y, z of the particle, and the pro-
jections of its velocity ﬁ’ﬂ’ﬁ . Furthermore, the right side of

z dt dt dt

each equation may include all these variables.

Eq. (2.11) can be used to solve both the first and the second

(the principal) problems of dynamics. To solve the principal

/ ¥ problem of dynamics we must know, besides the acting forces,

} the initial conditions, i.e., the position and velocity of the

particle at the initial time. The initial conditions for a set of




coordinate axes Oxyz are specified in the form: at =0,
X=Xgs Y=DVYo» <=2

U, =0,,,0, =V,,0, =V, (2.12)

Knowing the acting forces, by integrating Eq. (2.11) we find the
coordinates x, y, z of the moving particle as functions of time ¢, i.e., the equation of
motion for the particle. The solutions will contain six constants of integration C;, C;,
... Cg, the values of which must be found from the initial condition (2.12). An example
of integrating Egs. (2.11) 1s given in §.2.3.

2.3. Motion of a Particle Thrown at an Angle to the Horizon in a Uniform
Gravitational Field. Let us investigate the motion of a projectile thrown with an
initial velocity v, at an angle & to the horizon, considering it as a material particle of

mass m, neglecting the resistance of the atmosphere, assuming that the horizontal
range is small as compared with the radius of the earth and
considering the gravitational field to be uniform (P=
const.).

Place the origin of the coordinate axes O at the initial
position of the particle, direct the y-axis vertically up, the x
axis in the plane through Oy and vector v,, and the z-axis

Fig.3. perpendicular to the first two (Fig. 3). The angle between
vector v, and the x-axis will be a.
Draw now moving particle M anywhere on its path. Acting on the particle is only the

force of gravity P, the projections of which on the coordinate axes are P,=0, P,=-P=-
mg, P,=0.

2
Substituting these values into Eq. (2.11) and noting that d f: d;; ,etc., after
'
eliminating m we obtain:
dv
dv, _0. v o, dv, ~0.
dt dt dt

Multiplying these equations by df and integrating, we find 0,=C,;, v,=-gt+C,,v, =Cs.
The initial conditions of our problem have the form:
at t=0, x=0, y=0, z=0;
U, =0y cose, U, =0 sine, U, =0.
Satisfying the initial conditions, we have
C=ycosa, Cr =y sinx, C; = 0.
Substituting these values of C;, C; and Cs, in the solutions above and replacing v, v,
v, by ﬁ’ﬂ’ﬁ, we arrive at the equations
dt dt dt
dz

dx dy .
—=y,cosx, —=0,sinax—gt, —=0.
dt dt dt



2
Integrating, we obtain x=yt cosa+ C,, y=Uyt sina—% +Cs, z=Cs,

Substituting the initial conditions, we have C;=C,=C;=0. And finally we obtain the
equations of motion of particle M in the form

2
X=Uyt cosx, y=Uyt sina—%&, z=0. (2.13)

From the last equation it follows that the motion takes place in the plane
Oyy-

Knowing the equations of motion of a particle it is possible to determine all the
characteristics of the given motion by the methods of kinematics.
1. Path. Eliminating the time ¢ between the first two of Eqgs. (2.13), we obtain the
equation of the path of the particle:

_ gx”
y=xtano Weosa (2.14)

This is an equation of a parabola the axis of which is parallel to the y- axis. Thus, a
heavy particle thrown at an angle to the horizon in vacuum follows a parabolic path.

2. Horizontal Range. The horizontal range is the distance OC=X along the x-axis.
Assuming in Eq. (2.14) y=0, we obtain the points of intersection of the path with the
x- axis. From the equation

X tana—% =0
205 cos” &

20; cos’ - tan
X1=0, X, = .
8

The first solution gives point 0, the second point C. Consequently X=x, and finally
2

X =li?°sin 2. (2.15)

From Eq. (2.15) we see that the horizontal range X is the same for angle 5, where 25
= 180°— 2q; i.e., if f=90°—a. Consequently, a particle thrown with a given initial
velocity 7y can reach the same point C by two paths: flat (low) (a<45°) or curved
(high) (f= 90°—a> 45°). With a given initial velocity 1, the maximum horizontal

range in vacuum is obtained when sin 2a=1, i.e., when angle a=45°.
2
3. Height of path. If in Eq. (2.14) we assume x:%X:vLsinacosa, we obtain the
g

we obtain

height H of the path:
2

H :%‘)sinza. (2.16)

4. Time of flight. It follows from Eq. (2.13) that the total time of flight is
defined by the equation X=1, T cosca. Substituting the expression for X, we obtain



2

_“Y% ;
T = P sin . (2'17)

At the maximum range angle a*=45° all the quantities become

respectively

v; 1

4g 4

.
X' ==, T"'==4J2, H' = X"
8

3.VIBRATION OF A PARTICLE

3.1. Free Harmonic Motion. The study of vibrations is essential for a number of
physical and engineering fields. Although the vibrations studied in such different
fields as mechanics, radio engineering, and acoustics are of different physical nature,
the fundamental laws hold good for all of them. The study of mechanical vibrations is
therefore of importance not only because they are frequently encountered in
engineering but also because the results obtained in investigating mechanical
vibrations can be used in studying and understanding vibration phenomena in other
fields.

We shall start with examining free harmonic motion of a particle. Consider a particle
M (Fig. 4) moving rectilinearly under the action of a restoring force F directed
towards a fixed centre 0 and proportional to the distance from that centre. The
projection of F on the axis Ox is

0 F W F, =—cx. (3.1)

R . ) )
| | We see that the force F tends to return the particle to its

I
H_"'?A—H- position of equilibrium 0, where F =0, which is why it is
Fig4. called a "restoring" force. Let us derive the equation of
motion of the particle M. Writing the differential equation of
motion (2.1), we obtain

Dividing both sides of the equation by m and introducing notation

Ly (3.2)
m
we reduce the equation to the form
d’x
e +k*x=0. (3.3)

Eq. (3.3) is the differential equation of free harmonic motion. Referring to the

theory of differential equations, as the roots of a characteristic equation of the type
of Eq. (3.3) are imaginary, its general solution will be
(3.4)



x = Csin kt + C, cos kt

where C, and C, are constants of integration.

If we replace C, and C, by constants a and ¢, such that C,=a coseand C, =asing, we
obtain

X =a (sin kt xcosa + cos kt xsin a), or
x=asin(kt+ a. 3.5)

This is another form of the solution of Eq. (3.3) in which the constants of integration

appear as a and ¢, and which is more convenient for general analyses.

The velocity of a particle in this type of motion is

(3.6)

X

v = @ = akcos(kt + &).
dt

The vibration of a particle described by Eq. (3.5) is called simple harmonic motion.

The quantity a, which is the maximum distance of M from the centre of vibration, is
called the amplitude of vibration. The quantity ¢=kt+« is called the phase of
vibration. Unlike the coordinate x, the phase ¢ defines both the position of the

particle at any given time and the direction of its subsequent motion.

The quantity k is called the angular, or circular, frequency of vibration.

The time T in which the moving particle makes one complete oscillation is called the
period of vibration. In one period the phase changes by 2n. Consequently, we must
have kT=2z whence the period

o
4

The quantity v, which is the inverse of the period and specifies the number of
oscillations per second, is called the frequency of vibration:

1k

T 27

It can be seen from this that the quantity k differs from v only by a constant
multiplier 2z Usually we shall speak of the quantity k as of frequency.

The values of a and «a are determined from the initial conditions. Assuming that, at ¢

T (3.7)

= 0, x = xp and v, = v, we obtain from Egs. (3.5) and (3.6) xy =a sina and % =acosd.

By first squaring and adding these equations and then dividing them, we obtain

2 v kxo
a=,4x, +—, tana¥=——-.
UO

Note the following properties of free harmonic motion:
1) The amplitude and initial phase depend on the initial conditions;



2) The frequency k, and consequently the period 7, do not depend on the initial
conditions and are invariable characteristics for a given vibrating system.

It follows, in particular, that if a problem requires that only the period (or frequency)
of vibration be determined, it is necessary to write a differential equation of motion in
the form (3.3). Then T is found immediately from Eq. (3.7) without integrating.

Consider the next problem: A weight is attached to end B of a vertical spring AB
and released from rest. Determine the law of motion of the weight if the elongation of
the spring in the equilibrium condition is J,, (the static elongation of the spring).

Solution. Place the origin 0 of the coordinate axis in the position of static
equilibrium of the system and direct the axis Ox vertically down. The elastic
force F = C‘Al‘. In our case Al =6, + x, hence

F =—c(d, + x).

Writing the differential equation of motion, we obtain

md—zx——c(é' +x)+ P

dr’ '
But from the conditions of the problem the gravitational
force P = mg = cd, (in the position of equilibrium force P is

balanced by the elastic force cd,). Introducing the notation

L= 51 =k*, we reduce the equation to form
m st
2
d f +k’x=0,
dt

whence immediately we find the period of vibration:

T:2—7[:27r i
k \ g

Thus, the period of vibration is proportional to the square root of the static
elongation of the spring (this holds good also for a load vibrating on an elastic beam,
where 0, is the static deflection of the beam).

The solution of the obtained differential equation is

x=C,sinkt + C, coskt.
From the initial conditions, at t = 0, x = — 0,, and v, = 0. As

v = ax_ kC, cos kt — kC, sin kt,

dt
substituting the initial conditions, we obtain C,=—0,, C;= 0. Hence, the amplitude of
vibration is d;, and the motion is according to the law



x =— 0, cos kt.

We see that the maximum elongation of the spring in this motion is 29,
This solution shows that a constant force P does not change the type of motion

under the action of an elastic

force F but only shifts the center of the vibrations in the

direction of the action of the force by the quantity o, (without the force P the vibration
would, evidently, be about B).

3.2. Damped Vibration. Let us see how the resistance of a surrounding medium
affects vibrations, assuming the resisting force proportional to

r n Y. the first power of the velocity: R=-uv (the minus indicates that
-~ I = . . . .
g u force R is opposite to v ). Let a moving particle be acted upon
Fig.5. by a restoring force F and a resisting force R (Fig.5).
Then F, = —cx, R, = —UD, = —,uille and the differential equation of motion is
E —cx — ,u@
dr’ dt’
Dividing both sides by m, we obtain
2
d f+2bﬂ+k2x =0 3.8)
dt dt
where
’ ok Eoyp 3.9)
ar_ e 7 —_—_’: m m )
S~ . LI TN 7 . .
P\ Tl 25" Tt is easy to verify that k and b have the same
| TTee L . - . . .
0 i : /Tiz\ dimension (sec™), which makes it possible to compare
L/ e them
e geote Eq. (3.8) 1s called the differential equation of damped
4 vibration. The solution of Eq (3.8) can be found by
Fig.6. passing to a new variable z through the equality x = ze”"
Then
2 2
ﬂze-”'(@—bz}d Yoo L2 ey
dt dt dt dt dt

Substituting these expressions and the expression of x into Eq. (3.8), and after the
necessary computation, we obtain

d’z
dt

F(k* —b)z=0. (3.10)

2



Let us consider the case when k>b, i.e., when the resistance is small as compared
with the restoring force. Introducing the notation

k=+k>=b* (3.11)

we see that Eq. (3.10) coincides with Eq. (3.3).Consequently, z =a sin(kt+a) or,
passing to x,

x = ae’” sin (ki+ ). (3.12)

The expression (3.12) gives the solution of differential equation (3.8). The quantities
a and a are constants of integration and are determined by the initial conditions.

Vibrations according to the law (3.12) are called damped because, due to the
multiplier ¢, the value of x decreases with time and tends to zero. A graph of such
vibrations is given in Fig. 6. The graph shows that the vibrations are not periodic,
though they do show a certain repetition. For example, a particle oscillating about a

centre 0 returns to that centre at certain intervals T equal to the period sin (kt+ ).

Therefore the quantity
- 27 2z (3.13)

= P .

i1s conventionally called the period of damped vibration. Comparing, Egs. (3.13) and

(3.7), we see that T> T1i.e., that resistance to vibration tends to increase the period of
the vibration. When however, the resistance is small (b{((k) the quantity b’ can be

neglected in comparison with k* and we can assumeT =~ 7. Thus a small resistance has
no practical effect on the period of vibration.
The time interval between two successive displacements of an oscillating particle to

the right or to the left is also equal to T. Hence, if the maximum displacement x, to

the right takes place at time ¢; the second displacement x, will be at time t, = ¢;+ T,

etc. Then, by Eq. (3.12) and taking into account that kT =27, we have

x, =ae™ sin (kt,+ @),

x, =ae""*" sin (kt,+kT+ o) = x,e™"".

Similarly, for any displacement x,,, we will have x,,, =x.e™ " Thus we find that the

n+l



amplitude of vibration decreases in geometric progression. The denominator of this

T

progression e" is called the damping decrement, and the modulus of its logarithm,

1.e., the quantity b7, the logarithmic decrement.

It follows from these results that a small resistance has practically no effect on the
period of vibration, but gradually damps it by virtue of the amplitude of vibration
decreasing according to a law of geometric progression.

When the resistance is large and b > k, the solution of Eq. (3.10) contains no
trigonometric functions. The particle no longer oscillates but instead, under the
influence of the restoring force, gradually approaches the position of equilibrium.

3.3. Damped Forced Vibrations. Resonance. Consider the motion of a particle on
which are acting a restoring force F, a damping force R proportional to the velocity
(see § 3.2), and a disturbing force 0, whose projection on the axis Ox is Q,=Qysinpt.
The differential equation of this motion has the form

2

md x——cx—,u@+Q sin pt
r? da =’ '

Dividing both sides of the equation by m, assuming &:PO and taking into
m

account the expression (3.9), we obtain

2 3.14
df+2b@+k2xzposmpz . (314)
dt dt

Eq. (3.14) is the differential equation of damped forced vibration of a particle. Its
general solution, as is known, has the form x = x; + x;, where x; is the general solution
of the equation without the right side, i.e., of Eq. (3.8) [at k>b this solution is given by
Eq. (3.12)], and x,, is a particular solution of the complete equation (3.14). Let us find
the solution x; in the form

x> = A sin(pt—p),
where A and [ are constants so chosen that Eq. (3.14) should become an identity.
Differentiating, we obtain
d’x,
dt’
Substituting these expressions of the derivatives and x; into the left side of Eq. (3.14)

and introducing for the sake of brevity the notation pr — 8 = w (or pt =y + f), we
obtain

&, _ Apcos(pt - f3),
dt

= —Ap” sin(pt — ).

A (—p*+k°) sin w+ 2bpA cos W= Py (cos Bsin W+ sin Bcos y).

For this equation to be satisfied at any value of ¥ i.e., at any instant of time, the
factors of sin wand cos win the left and right sides should be separately equal. Hence,



A (K — p*) = Py cosfB 2bpA = P, sin fB
First squaring and adding these equations, and then dividing one by the other, we
obtain:
A= £ , tan B= 22bp y (3.15)
J& = p>)? +4b*p? k*=p
As x = x; + x, and the expression x; is given by Eq. (3.12) we have the final solution
of Eq. (3.14) in the form

x = ae™ sin (kt+a)+ A sin (pt—/). (3.16)

Here a and o are constants of integration determined from the initial conditions, and
the expressions for A and g are given by Eqgs. (3.15) and do not depend on the initial
conditions. These vibrations are compounded of natural vibration [the first term in Eq.
(3.16); Fig. 7 a] and forced vibration [the second term in Eq. (3.16); Fig. 7 b]. The
natural vibration of the particle in such a case was discussed in § 3.2. It was
established that it is transient and is damped fairly quickly, and after a certain interval
of time ¢, called the transient period, can be neglected. A curve showing the transient
vibration is given in Fig. 7 c¢. For practical purposes it can thus be assumed that after a
certain transient period a particle will vibrate according to the law

x = A sin (pt—p). (3.17)

This is steady-state forced vibration, a sustained periodic — Z| _
motion with amplitude A defined by Eq. (3.15) and a -, [\ \n-
frequency p equal to the impressed frequency. The quantity -

S characterizes the phase shift of forced vibration with :

respect to the disturbing force. Let us investigate the results i
obtained. First let us introduce the notation &)
p_,b B 0,
;—l,;—h,k—z—T—ﬁo, (3.18) a0
where A is the frequency ratio, & a quantity characterizing n’ﬂ’ﬂ—ﬂ'—ﬂ ﬂ W n n ﬂ
the damping effect, ¢ the magnitude of the static deflection C/ ~U\J U U u U U U L
of a particle under the action of force Q,, Fom——o=E=L U U U UL
Then, dividing the numerator and denominator of Eq. (3.15) A
2 . Flg.7.
by k°, we obtain
B d, _ 2hA
A_J(1—12)2+4h2/12’ tan = -2 (3.19)



It can be seen from Eq. (3.19) that

A, O p A and B depend on two di-

? 1w ionl ters A and A

1 mensionless parame

R - Graphs of this relation for certain

values of h are given in Fig. 8. The

values of & A and h can be

computed for each specific problem

from 1its conditions, and the values

) of A and p determined from the
" ) 2rgk  respective graphs or Egs. (3.19).
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2 fea2f g-s
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Fig.8.
These graphs (and equations) also show that by altering the frequency ratio A we
can induce forced vibrations of different amplitude.
When the resistance is very small (as ordinarily in the atmosphere) and A is not close
to unity, it is possible in Egs. (3.19) to assume approximately & = 0. In this case we
obtain

zﬁ; B =0(atAl), B =180 (atA)1).

Let us consider also the following special cases. 1) If the frequency ratio 4 is very
small(p(( k), then, assuming as an approximation 4 =0, we obtain from Eq. (3.19)
A=

The vibration in this case has an amplitude equal to the static deflection & and the
phase shift is f=0.

2) If the frequency ratio A is very large (p)) k), A becomes very small. This case is of
special interest for the absorption of vibrations in structures, instruments, etc.
Assuming the resistance to be small and neglecting 244 and 1 as compared with A” in
Eq. (3.19), we obtain for computing A an approximate formula:

o P
A = ? = p—oz
3) In all cases of practical interest /& is very small. Then, from Eq. (3.19), if A is

almost unity the amplitude of forced vibrations becomes very large. This phenomenon
is called resonance.

At resonance we can assume A = / in Eq. (3.19), and then
_% 5 _
ro 2]’1 ’ ﬁr -

We see that when £ is small A, can become very large.

(3.20)

NN



When the damping force, and with it A, tends to zero, the limiting value of the
. amplitude A, as Eq. (3.20) shows, tends to infinity. Thus, with
i <~ [\ no damping force the vibration amplification process in
"7\/ [\ resonance conditions is unlimited and the amplitude increases
\:\/ indefinitely. A graph of resonance vibration is given in Fig. 9.
‘\j U When the damping forces are very small the picture is similar.

>

General Properties of Forced Vibration. It follows from
the results obtained above that forced vibration has the fol-
lowing important properties, which distinguish it from the
natural vibration of a particle:

Fig.9.

1) The amplitude of forced vibration does not depend on the initial conditions.
2) Forced vibration does not die out in the presence of resistance. 3) The frequency of
forced vibration is equal to the frequency of the disturbing force and does not depend
on the characteristics of the vibrating system (the disturbing force "impresses" its own
vibration frequency on the system). 4) Even when the disturbing force Q, is small,
large forced vibration can be induced if the resistance is small and the frequency p is
almost equal to k (resonance). 5) Even if the disturbing force is large, forced vibration
can be damped if the frequency p is much larger than k.

Forced vibration, and resonance in particular, plays an important part in many
branches of physics and engineering. Lack of balance in working machines and
motors, for example, usually causes forced vibration to appear in the machine or its
foundation.

In radio engineering the reverse is true. Resonance 1s extremely useful and is used to
separate the signals of one radio station from those of all others (tuning).



4. INTRODUCTION TO THE DYNAMICS OF A SYSTEM

4.1. Mechanical Systems. External and Internal Forces. A mechanical system is
defined as such a collection of material points (particles) or bodies in which the
position or motion of each particle or body of the system depends on the position and
motion of all the other particles or bodies. We shall thus regard a material body as a
system of its particles.

A classical example of a mechanical system is the solar system, all the component
bodies of which are connected by the forces of their mutual attraction.

A collection of bodies not connected by interacting forces does not comprise a
mechanical system (e.g., a group of flying aircraft). In this summary we shall consider
only mechanical systems, calling them just "systems" for short.

The forces acting on the particles or bodies of a system can be subdivided into
external and internal forces.

External forces are defined as the forces exerted on the members of a system by
particles or bodies not belonging to the given system. Internal forces are defined as the
forces of interaction between the members of the same system. We shall denote
external forces by the symbol F¢, and internal forces by the symbol F'. Both external
and internal forces can be either active forces or the reactions of constraints. The
division of forces into external and internal is purely relative, and it depends on the
extent of the system whose motion is being investigated. In considering the motion of
the solar system as a whole, for example, the gravitational attraction of the sun acting
on the earth is an internal force; in investigating the earth's motion about the sun, the
same force is external.

Internal forces possess the following properties:

1. The geometrical sum (the principal vector) of all the internal forces of a system is
zero. This follows from the third law of dynamics, which states that any two particles
of a system (Fig.10) act on each other with equal and oppositely directed forces F'i
and F's, the sum of which is zero. Since the same is true for any pair of particles of a

system, then
z F'v =0. 4.1)

2. The sum of the moments (the principal moment) of all the internal forces of a system
with respect to any centre or axis is zero. For if we take an arbitrary centre 0, it is
apparent from Fig.10 that m,(F') + 7, (F'2) = 0. The same

result holds good for the moments about any axis. Hence, for the
system as a whole we have

i (Fie) = 0 or 2 m.(F'y) = 0. 4.2)
It does not follow from the above, however, that the internal

forces are mutually balanced and do not affect the motion of the system, for they are



applied to different particles or bodies and may cause their mutual displacement. The
internal forces will be balanced only when a given system is a rigid body.

4.2. Mass of a System. Centre of Mass. The motion of a system depends, besides
the acting forces, on its total mass and the distribution of this mass. The mass of a
system 1s equal to the arithmetical sum of the masses of all the particles or bodies
comprising it:

M =2 m. @3)
The distribution of mass is characterized primarily by the location of a point called the
centre of mass. The centre of mass or centre of inertia, of a system is defined as a
geometrical point C whose coordinates are given by the equations:

zmkxk zmkyk _kazk
T M

Xe = » Yo = >

M M
where my is the mass of a particle of the system, and x;, y;,z; are its coordinates.
If the position of a centre of mass is defined by its radius vector 7., we can obtain from

4.4)

Egs. (4.4) the following expression

S ka’_;k
T, == 4.5)

where 7, is the radius vector of a particle of the system.

For a body in a uniform gravitational field, the centre of mass coincides with the
centre of gravity. The concepts of centre of gravity and centre of mass, however, are
not identical. The concept of centre of gravity, as the point through which the resultant
of the forces of gravity passes, has meaning only for a rigid body in a uniform field of
gravity. The concept of centre of mass, as a characteristic of the distribution of mass in
a system, on the other hand, has meaning for any system of particles or bodies,
regardless of whether a given system is subjected to the action of forces or not.

4.3. Moment of Inertia of a Body About an Axis. Radius of Gyration. The position
of centre of mass does not characterise completely the distribution of mass in a
system. For if in the system in Fig.11 the distance & of each of two identical spheres A
and B from the axis Oz is increased by the same
quantity, the location of the centre of mass will not
change, though the distribution of mass will change
and influence the motion of the system (all other
conditions remaining the same, the rotation about axis
Oz will be slower).

Fig.11.

Accordingly, another characteristic of the distribution of mass, called the moment
of inertia, is introduced in mechanics. The moment of inertia of a body with respect to
a given axis Oz is defined as a scalar quantity equal to the sum of the masses of the
particles of the body, each multiplied by the square of its perpendicular distance from
the axis:



J. =Y mhi. (4.6)

It will be shown further on that moment of inertia plays the same part in the
rotational motion of a body as mass does in translatory motion, i.e., moment of inertia
is a measure of a body's inertia in rotational motion.

By Eq. (4.6), the moment of inertia of a body is equal to the sum of the moments
of inertia of all its parts with respect to the same axis. For a material point located at a
distance 4 from an axis, J, = mh’. The dimension of moment of inertia in the technical
system of units is [J] = kgm-sec’.

The concept of radius of gyration is often employed in calculations. The radius
of gyration of a body with respect to an axis Oz is a linear quantity o defined by the
equation

J.=Mp*, 4.7)
where M is the mass of the body.

It follows from the definition that geometrically the radius of gyration is equal
to the distance from the axis Oz to a point, such that if the mass of the whole body
were concentrated in it the moment of inertia of the point would be equal to the
moment of inertia of the whole body. Knowing the radius of gyration, we can obtain
the moment of inertia of a body from Eq. (4.7) and vice versa.

4.4. Moments of Inertia of Some Homogeneous Bodies. If we divide a body into
elements, in the limit the sum in Eq. (4.6) will become an integral and we obtain
J, = J.hzdm , (4.8)
W)
where the integration is over the whole volume of the body and depends on the
coordinates of the points of the body. Eq. (4.8) is convenient in computing the
moments of inertia of homogeneous bodies. Let us examine some examples.

1. Thin Homogeneous Rod of Length | and Mass M. Let us find its moment of inertia
with respect to an axis Az perpendicular to the rod (Fig. 12). If we lay off a coordinate

A

axis Ax along AB, for any line element of length dx we have h =

) x and its mass dm=p;dx, where p; =m/l 1s the mass of a unit

o length of the rod, and Eq. (4.8) gives:
f l 1 l3
f’? J, =£x2dm=p1_£x2dx=p1?.

b Substituting the expression for p;, we obtain finally

.z
Fig.12. J, =%M12.

2. Thin Circular Homogeneous Ring of Radius R and Mass M. Let us find its moment
of inertia with respect to an axis Cz perpendicular to the plane of the ring through its
centre (Fig. 13). As all the points of the ring are at a distance &, = R from axis Cz, Eq.
(4.6) gives



2! Je=Y mR* = m)R*=MR>.

_ Hence, for the ring
J.=MR".

Fig.13. It is evident that the same result is obtained for the moment of
inertia of a cylindrical shell of mass M and radius R with respect to its axis.
3. Circular Homogeneous Disc or Cylinder of Radius R and Mass M. Let us compute
the moment of inertia of a circular disc with respect to an axis Cz perpendicular to it
through its centre (Fig. 14a). Consider an elemental ring of radius r and width dr. Its

area 1S 2zrdr, and its mass dm = p27rdr,
M . .

where p, =7 1s the mass of a unit area of the
T

disc. From Eq.(4.8) we have for the elemental
ring
dJ . =r’dm=2mp,r’dr

and for the whole disc

Fig.14.

T 3 1 4

Jo = Zﬁpzlr dr = 27[sz .

Substituting the expression for p, we obtain finally
| .

Jo = EMR .
It is evident that the same formula is obtained for the moment of inertia J, of a
homogeneous circular cylinder of mass M and radius R with respect to its axis Cz (Fig.
14b).
The moments of inertia of non-homogeneous and composite bodies can be determined
experimentally with the help of appropriate instruments.
4.5. Moments of Inertia of a Body About Parallel Axes. The Parallel-Axis
(Huygens') Theorem. In the most general case, the moments of inertia of the same
body with respect to different axes are different. Let us see how to determine the
moment of inertia of a body with respect to any axis if its moment of inertia with
respect to a parallel axis through the body is known.
Draw an axis Cz through the centre of mass C of a body, and an axis Oz; parallel to it
(Fig. 15), denoting the distance between the two axes by the symbol d. By definition
we have

JOZ :kahkz ’JCz :z’/nkh]'(2 )
where /i, is the distance of an arbitrary point B of the body from axis Oz;, and &, is the

distance of the same point from axis Cz, It follows from ABae that
h; =h’+d’—2dh, cosq, .



Let us draw from point C, as the origin of a coordinate system, axes x and y
perpendicular to Cz, such that x intersects with axis Oz;.It is evident that Cx||ae.
Denoting the coordinates of point B as x;, y;, zx we obtain:

h,cosa, = x,and h; =h’ +d* —2dx, .
Substituting this expression of /; into the expression for J, and taking the common
factors d” and 2d outside the summation signs, we have

Joo = > m? + (> m )d* =24 mx, .

The first summation in the right side of the equation is equal to J., and the second to

the mass M of the body. Let us find the value of the third
summation. From Eq. (4.4) we know that, for the
coordinates of the centre of mass, > m,x, = Mx.. But since

in our case point C is the origin, x. = 0, and consequently
> m,x, =0. We finally obtain

Joy =Jc. +Md?* . 4.9)
Eq. (4.9) expresses the parallel-axis theorem enunciated
by Huygens: The moment of inertia of a body with respect
to any axis is equal to the moment of inertia of the body
with respect to a parallel axis through the

Fig.15. centre of mass of the body plus the product of the mass of
the body and the square of the distance between the two axes.

It follows from Eq. (4.9) that J, >J. .Consequently, of all the axes of same

direction, the moment of inertia is least with respect to the one through the centre of
mass.

4.6. The Differential Equations of Motion of a System. Suppose we have a system
of n particles. Choosing any particle of mass m, belonging to the system, let us denote
the resultant of all the external forces acting on the particle (both active forces and the
forces of reaction) by the symbol F¢and the resultant of all the internal forces by F.

If the particle has an acceleration w,, then, by the fundamental law of dynamics,
mva/k = ﬁke-l-ﬁ'k[.
Similar results are obtained for any other particle, whence, for the whole system,
we have

(4.10)

m,w, = 13”6 +I7n’ '
These equations, from which we can develop the law of motion of any particle of the
system, are called the differential equations of motion of a system in vector form. Egs.



- -
(4.10) are differential because w, =% = a;t’;" . In the most general case the forces in
the right side of the equations depend on the time, the coordinates of the particles of
the system, and their velocities.

By projecting Egs. (4.10) on coordinate axes, we can obtain the differential
equations of motion of a given system in terms of the projections on these axes.

The complete solution of the principal problem of dynamics for a system would be
to develop the equation of motion for each particle of the system from the given forces
by integrating the corresponding differential equations. For two reasons, however, this
solution is not usually employed. Firstly, the solution is too involved and will almost
inevitably lead into insurmountable mathematical difficulties. Secondly, in solving
problems of mechanics it is usually sufficient to know certain overall characteristics of
the motion of a system, without investigating the motion of each particle. These
overall characteristics can be found with the help of the general theorems of systems
dynamics, which we shall now study. The main application of Eqgs.(4.10) or their
corollaries will be to develop the respective general theorems.

S. GENERAL THEOREMS OF PARTICLE AND SYSTEM
DYNAMICS

In solving many problems of dynamics it will be found that the so-called general
theorems, representing corollaries of the fundamental law of dynamics, are more
conveniently applied than the method of integration of differential equations of
motion.

The importance of the general theorems is that they establish visual relationships
between the principal dynamic characteristics of motion of material bodies, thereby
presenting broad possibilities for analyzing the mechanical motions widely employed
in practical engineering. Furthermore, the general theorems make it possible to study
for practical purposes specific aspects of a given phenomenon without investigating
the phenomenon as a whole. Finally, the use of the general theorems makes it un-
necessary to carry out for every problem the operations of integration performed once
and for all in proving the theorems, which simplifies the solution.

5.1. Momentum of a Particle and a System. One of the basic dynamic
characteristics of particle motion is momentum (or linear momentum).

The momentum of a particle is defined as a vector quantity mv equal to the
product of the mass of the particle and its velocity. The vector mv is directed in the
same direction as the velocity, i.e., tangent to the path of the particle.

The linear momentum, or simply the momentum, of a system is defined as the vector
quantity Q equal to the geometric sum (the principal vector) of the moments of all the
particles of the system (Fig. 16):



Q:kaﬁk_ (5.1

It can be seen from the diagram that, irrespective
of the velocities of the particles (provided that they
are not parallel) the momentum vector can take any
value, or even be zero when the polygon constructed
with the vectors myv, as its sides is closed. Conse-

Fig.16.

quently, the quantity 0 does not characterize the
motion of the system completely. Let us develop a formula with which it is much
more convenient to compute ¢ and also to explain its meaning. It follows from Eq.
(4.5) that

ka?k =Mr,..
Differentiating both sides with respect to time, we obtain

dr, dr, - -
ka 7; =M7tc or kavk =My

whence we find that

0 =My, (5.2)
1.e., the momentum of a system is equal to the product of the mass of the whole
system and the velocity of its center of mass. This equation is especially convenient
in computing the momentum of rigid bodies.

It follows from Eq. (5.2) that, if the motion of a body (or a system) is such that the
center of mass remains motionless, the momentum of the body is zero. Thus, the
momentum of a body rotating about a fixed axis through its center of mass is zero
(the polygon in Fig. 16 is closed).

If, on the other hand, a body has relative motion, the quantity O will not
characterize the rotational component of the motion about the center of mass. Thus,
for a rolling wheel, 0 = M7 _, regardless of how the wheel rotates about its center of
mass C.

We see, therefore, that momentum characterizes only the translatory motion of a
system, which is why it is often called linear momentum. In relative motion, the
quantity Q characterizes only the translatory component of the motion of a system
together with its center of mass.

5.2. Impulse of a Force. The concept of impulse (or linear impulse) of a force is
used to characterize the effect on a body of a force acting during a certain interval of
time. First let us introduce the concept of elementary impulse, i.e., impulse in an
infinitesimal time interval dt. Elementary impulse is defined as a vector quantity d S
equal to the product of the vector of the force F and the time element d:

dS=F dt.
The elementary impulse is directed along the action line of the force.



The impulse S of any force F during a finite time interval ¢ is computed as the
integral sum of the respective elementary impulses:

S =]LI7“dt. (5.3)

Thus, the impulse of a force in any time interval #; is equal to the integral of the
elementary impulse over the interval from zero to ¢,

In the special case when the force F is of constant magnitude and direction (F =
const.), we have S=F1;, In the general case the magnitude of an impulse can be
computed from its projections. We can find the projections of an impulse on a set of
coordinate axes if we remember that an integral is the limit of a sum, and the
projection of a vector sum on an axis is equal to the sum of the projections of the
component vectors on the same axis. Hence,

0 0 0

With these projections we can construct the vector S and find its magnitude and the
angles it makes with the coordinate axes. The dimension of linear impulse in the
technical system of units is [S]=kg-sec.

To solve the principal problem of dynamics, it is important to establish the forces
whose impulses can be computed without knowing the equation of motion of the
particle moving under the action of those forces. It is apparent that to these forces
belong only constant forces and forces depending on time.

5.3. Theorem of the Motion of Center of Mass. In many cases the nature of the
motion of a system (especially of a rigid body) is completely described by the law of
motion of its center of mass. To develop this law, let us take the equations of motion
of a system (4.10) and add separately their left and right sides. We obtain

Smaw, =Y FS+> F. (5.4)
Let us transform the left side of the equation. For the radius vector of the center of
mass we have

ka?k = Mr,.

Taking the second derivative of both sides of this equation with respect to time, and
noting that the derivative of a sum equals the sum of the derivatives, we find

d’7, d’v
m =M —*
2. dr? dr’

or
ka w, = Mw,

where w, is the acceleration of the center of mass of the system. As the internal forces

of a system give Zﬁ,j =0, by substituting all the developed expressions into Eq. (5.4),

we obtain finally:



M, =Y Ff . (5.5)
Eq. (5.5) states the theorem of the motion of the center of mass of a system. Its form
coincides with that of the equation of motion of a particle of mass m=M where the act-
ing forces are equal to F¢. We can therefore formulate the theorem of the motion of

the centre of mass as follows: the center of mass of a system moves as if it were a
particle of mass equal to the mass of the whole system to which are applied all the
external forces acting on the system. Projecting both sides of Eq. (5.5) on the
coordinate axes, we obtain

d*x . d’y . d’z .
M dtzC :sz" ’ M dtzc :ZFky ’ M dtZC :szz * (5'6)

These are the differential equations of motion of the center of mass in terms of the
projections on the coordinate axes. The theorem is valuable for the following reasons:
1) It justifies the use of the methods of particle dynamics. It follows from Egs. (5.6)
that the solutions developed on the assumption that a given body is equivalent to a
particle define the law of motion of the center of mass of that body. Thus, these
solutions have a concrete meaning.

In particular, if a body is being translated, its motion is completely specified by the
motion of its center of mass, and consequently, a body in translatory motion can
always be treated as a particle of mass equal to the mass of the body. In all other cases,
a body can be treated as a particle only when the position of its center of mass is
sufficient to specify the position of the body.

2) The theorem makes it possible, in developing the equation of motion for the centre
of mass of any system, to ignore all unknown internal forces. This is of special
practical value.

S5.4. The Law of Conservation of Motion of Center of Mass. The following
important corollaries arise from the theorem of the motion of center of mass:
1) Let the sum of the external forces acting on a system be zero:
> F¢ =0.
It follows, then, from Eq. (5.5) that w. = 0 or v, = const. Thus, if the sum of all the

external forces acting on a system is zero, the center of mass of that system moves with
a velocity of constant magnitude and direction, i.e., uniformly and rectilinearly. In
particular, if the center of mass was initially at rest it will remain at rest. The action of
the internal forces, we see, does not affect the motion of the center of mass.

2) Let the sum of the external forces acting on a system be other than zero, but let the
sum of their projections on one of the coordinate axes (the x- axis, for instance), be

ZEero:
> F.=0.
The first of Egs. (5.6), then, gives
2
d )ZC =0 or dx
dt dt

=V, =const.



Thus, if the sum of the projections on an axis of all the external forces acting on a
system is zero, the projection of the velocity of the center of mass of the system on that
axis is a constant quantity. In particular, if at the initial moment v. =0, it will remain
zero at any subsequent instant, i.e., the center of mass of the system will not move
along the x-axis (x¢ = const.).

The above results express the law of conservation of motion of the center of mass of a
system.

5.5. Theorem of the Change in the Momentum of a Particle. As the mass of a

—

particle is constant, and its acceleration sz% equation, which expresses the
t

fundamental law of dynamics, can be expressed in the form:

dmv) &
” —ZFk. (5.7)

Let a particle of mass m moving under the action of a force R = Zﬁk have a velocity

v, at time =0, and at time ¢, let its velocity be ¥, . Now let us multiply both sides of

Eq. (5.7) by dt and take definite integrals. On the right side, where we integrate with
respect to time, the limits of the integrals are zero and ¢;; on the left side, where we
integrate the velocity, the limits of the integral are the respective values of v, and v,.

As the integral of d (mv ) is mv , we have
I
my, —my, =Zijdt :
0

By Eq. (5.3), the integrals on the right side are the impulses of the acting force.
Hence, we finally have

my, —my, = S,. (5.8)

Eq. (5.8) states the theorem of the change in the linear momentum of a particle: the
change in the momentum of a particle during any time interval is equal to the
geometric sum of the impulses of all the forces acting on the particle during that
interval of time.

In problem solutions, projection equations are often used instead of the vector
equation (5.8). Projecting both sides of Eq. (5.8) on a set of coordinate axes, we have

my, —mv, = ZS .
my,,=mvy,= ZSky
mvlz_ vazz ZSkz

In the case of rectilinear motion along the x- axis, the theorem is stated by the first of
these equations.



5.6. Theorem of the Change in Linear Momentum of the System. Consider a
system of n particles. Writing the differential equations of motion (4.10) for this
system and adding them, we obtain

> mow, =Y F+ D F.
From the property of internal forces the last summation is zero. Furthermore,
. d _\_dQ
zmkwk :E(zmkvk)zf
and we finally have

d_Q_ e
=Y (5.9)

Eq. (5.9) states the theorem of the change in the linear momentum of a system in
differential form: the derivative of the linear momentum of a system with respect to
time is equal to the geometrical sum of all the external forces acting on the system. In

terms of projections on cartesian axes we have
dQ dQ do
L=NF 2 =N F =) FL 5.10
N W ¥t (5.10)

Let us develop another expression for the theorem. Let the momentum of a system
be Q, at time t=0, and at time #; let it be Q,. Multiplying both sides of Eq. (5.9) by dt
and integrating, we obtain

G, -0, =3 [ Fean

or 0,-0,=Y.8; (5.11)
as the integrals to the right give the impulses of the external forces. Eq. (5.11) states
the theorem of the change in the linear momentum of a system in integral form: the
change in the linear momentum of a system during any time interval is equal to the
sum of the impulses of the external forces acting on the body during the same interval
of time. In terms of projections on cartesian axes we have

le - QOx = ZSIZ(
Ql)f N QO)f = z S/fy
le _QOz = ZS/; )

Let us show the connection between this theorem and the theorem of the motion of
center of mass. As Q=M7v_, by substituting this expression into Eq. (5.9) and taking

—

dv.
dt

Consequently, the theorem of the motion of center of mass and the theorem of the
change in the momentum of a system are, in effect, two forms of the same theorem.
Whenever the motion of a rigid body (or system of bodies) is being investigated, both
theorems may be used, though Eq. (5.5) is usually more convenient.

into account that =w, we obtain Mw, = Zﬁ,f 1e., Eq. (5.5).



For a continuous medium (a fluid), however, the concept of center of mass of the
whole system is virtually meaningless, and the theorem of the change in the
momentum of a system is used in the solution of such problems.

The practical value of the theorem is that it enables us to exclude from consideration
the immediately unknown internal forces (for instance, the reciprocal forces acting
between the particles of a liquid).

5.7. The Law of Conservation of Linear Momentum. The following important
corollaries arise from the theorem of the change in the momentum of a system:
1) Let the sum of all the external forces acting on a system be zero:

> F =0
It follows from Eq. (5.9) that in this case Q=const. Thus, if the sum of all the
external forces acting on a system is zero, the momentum vector of the system is
constant in magnitude and direction.
2) Let the external forces acting on a system be such that the sum of their
projections on any axis Ox is zero:
D> FL=0.
It follows from Egs. (5.10) that in this case Q =const. Thus, if the sum of the

projections on any axis of all the external forces acting on a system is zero, the
projection of the momentum of that system on that axis is a constant quantity.
These results express the law of conservation of the linear momentum of a system.

5.8. Theorem of the Change in the Angular Momentum of a Particle. Often, in
analyzing the motion of a particle, it is necessary to consider the change not of the
vector my itself, but of its moment. The moment of the vector mv with respect to any
center O or axis z is denoted by the symbol i, (mv) or m_(mv) and is called the moment

of momentum or angular momentum with respect to that center or axis. The moment

of vector mv is calculated in the same way as the moment of a force. Vector mv is

considered to be applied to the moving particle. In
magnitudelm, (mv) =mvh, where h is  the
perpendicular distance from 0 to the position line of

the vector mv (see Fig. 17).

1.  Principle of Moments About an Axis. Consider
a particle of mass m moving under the action
of a force F. Let us establish the dependence
between the moments of the vectors mv and
F with respect to any fixed axis z.

It is well known that

my( F )=xF,-yF,. (5.12)




Similarly, for m_(mv), and taking m out of the parentheses, we have
m_(my) =m(xv, —yv,). (5.13)
Differentiating both sides of this equation with respect to time, we obtain

d . dx dy dv, dv,
— =m| —v, ——v_|+| xm—=— :
% [m, (mv)] m( v, vxj (xm % ym & j

The expression in the first parentheses of the right side of the equation is zero,

as -y and ﬂzvy.From Eq. (5.12), the expression in the second pair of

X

dt dt
parentheses is equal to mz(ﬁ), since, from the fundamental law of dynamics,

mdv" =F,, mdvy =F
dt dt >
Finally, we have
%[mz(mﬁ)]zmz(ﬁ). (5.14)

This equation states the principle of moments about an axis: the derivative of the
angular momentum of a particle about any axis with respect to time is equal to the
moment of the acting force about the same axis

2. Principle of Moments about a Center. Let us find for a particle moving under the
action of a force F (Fig. 17) the relation between the moments of vectors mv and F
with respect to any fixed center 0. It was shown that m,(F)= 7 x F . Similarly,

my(mv) =1 X my.

Vector 7,(F) is normal to the plane through 0 and vector F , while the vector 7, (mv)
1s normal to the plane through the center 0 and vector mv . Differentiating the ex-
pression n,(mv) with respect to time, we obtain

i(17><m\7) = (QXm§)+(?><mﬂ) =(WXmv)+ (FXmw).
dt dt dt

But vxmv =0, as the vector product of two parallel vectors, and mw = F . Hence,

d . .. . = d _ . =
Z(erv)zer,Or E[mo(mv)]zmo(F). (5.15)

This is the principle of moments about a center: the derivative of the angular
momentum of a particle about any fixed center with respect to time is equal to the
moment of the force acting on the particle about the same center. An analogous
theorem is true for the moments of vector mv and force F with respect to any axis z,
which is evident if we project both sides of Eq. (5.15) on that axis. This was proved
directly in item 1.



5.9. Total Angular Momentum of a System. The total angular momentum of a
system with respect to any center 0 is defined as the quantity K,, equal to the

geometrical sum of the angular moments of all the particles of the system with respect
fo that center:

Ky =iy (m,7,). (5.16)

The angular moment of a system with respect to each of three
rectangular coordinate axes are found similarly:
K, = me(m,jk), K, =Zmy(mk\7k), K, =Zmz(mk\7k). (5.17)
By the theorem proved in § 5.8, K|, K,, K, are the respective
projections of vector K, on the coordinate axes.

To understand the physical meaning of K, let us compute
" the angular momentum of a rotating body with respect to its
axis of rotation. If a body rotates about a fixed axis Oz (Fig.
18) the linear velocity of any particle of the body at a distance
from the axisis wh,. Consequently, for that particle

Fig.18. m,(m,v,)=mv,h, =m,@ h; . Then, taking the common multiplier

@ outside of the parentheses, we obtain for the whole body
K, = Zmz(mkﬁk) = (kah,f)a).

The quantity in the parentheses is the moment of inertia of the body with respect to

the z- axis (§ 4.3). We finally obtain
K.-=J w. (5.18)

Thus, the angular momentum of a rotating body with respect to the axis of rotation is
equal to the product of the moment of inertia of the body and its angular velocity.

If a system consists of several bodies rotating about the same axis, then, apparently,

K.=J,0+J,0,+.+J, 0,.

The analogy between Egs. (5.2) and (5.18) will be readily noticed: the momentum
of a body is the product of its mass (the quantity characterizing the body's inertia in
translatory motion) and its velocity; the angular momentum of a body is equal to the
product of its moment of inertia (the quantity characterizing a body's inertia in
rotational motion) and its angular velocity.

Just as the momentum of a system is a characteristic of its translatory motion, the
total angular momentum of a system is a characteristic of its rotational motion.

5.10. Theorem of the Change in the Total Angular Momentum of a System. The
principle of moments, which was proved for a single particle (§ 5.8), is valid for all the
particles of a system. If, therefore, we consider a particle of mass m, and velocity v,

belonging to a system, we have for that particle

diy. . o man o =
E[mo(mkvk)]:mO(Fk )+my(Fp).



where F¢ and F'; are the resultants of all the external and internal forces acting on
the particle.
Writing such equations for all the particles of the system and adding them, we obtain

die . [ - o Lo
E[zmo(mkvk )]: sz(Fk )"‘Zmo(Fk) .
But from the properties of the internal forces of a system, the last summation vanishes.
Hence, taking into account Eq. (5.16), we obtain finally

dKy — . =
dt“ D my (F). (5.19)

This equation states the following principle of moments for a system: The derivative
of the total angular momentum of a system about any fixed center with respect to time
is equal to the sum of the moments of all the external forces acting on that system
about that center.

Projecting both sides of Eq. (5.19) on a set of fixed axes Oxyz, we obtain

dK . dK | _ dK =,
dtxzzmx(p;), 7:Zmy(Fk), dt'zZmz(Fk). (5.20)

5.11. The Law of Conservation of the Total Angular Momentum. The following
important corollaries can be derived from the principle of moments.

1) Let the sum of the moments of all the external forces acting on a system with
respect to a center 0 be zero:

> iy (F)=0.

It follows, then, from Eq. (5.19) that K,= const. Thus, if the sum of the moments of
all external forces acting on a system taken with respect to any center is zero, the total
angular momentum of the system with respect to that center is constant in magnitude
and direction.

2) Let the external forces acting on a system be such that the sum of their moments
with respect to any fixed axis Oz is zero:

>m (F)=0.

It follows, then, from Eqgs. (5.20) that K, = const. Thus, if the sum of the moments of
all the external forces acting on a system with respect to any axis is zero, the total
angular momentum of the system with respect to that axis is constant.

These conclusions express the law of conservation of the total angular momentum of a
system. It follows from them that internal forces cannot change the total angular
momentum of a system.

5.12. Kinetic Energy of Particle and a System. The kinetic energy of a particle is a

scalar quantity equal %mvz. The kinetic energy of a system is defined as a scalar



quantity T equal to the arithmetical sum of the kinetic energies of all the particles of
the system:

2
T:kazv L (5.21)

If a system consists of several bodies, its kinetic energy is, evidently, equal to the
sum of the kinetic energies of all the bodies:

T=>T,.

Let us develop the equations for computing the kinetic energy of a body in different
types of motion.

1. Translatory Motion. In this case all the points of a body have the same velocity,
which is equal to the velocity of the centre of mass. Therefore, for any point v, =v_,

and Eq. (5.21) gives

m V k ( )\/
— k —
71tmm - z mgp.,

:lw . (5.22)

trans 2 c

2. Rotational Motion. The velocity of any point of a body rotating about an axis Oz
1s v, =wh, where h, is the distance of the point from the axis of rotation, and @ is the

angular velocity of the body. Substituting this expression into Eq. (5.21) and taking
the common multipliers outside the parentheses we obtain

T = L e —(Emhio

The term in the parentheses is the moment of inertia of the body with respect to the
axis z. Thus we finally obtain

e (5.23)

rotation 2

3. Plane Motion. In plane motion, the velocities of all the points of a body are at any
instant directed as if the body were rotating about an axis perpendicular to the plane of
motion and passing through the instantaneous centre of zero velocity P (Fig. 19).
Hence, by Eq. (5.23)

Ly o

plane = E p

where J, 1s the moment of inertia of the body with respect to the
instantaneous axis of rotation.

> The quantity J, is variable, as the position of the centre P
Fi.19. continuously changes with the motion of the body. Let us
introduce instead of J, a constant moment of inertia J. with

respect to an axis through the centre of mass C of the body. By the parallel-axis
theorem, JP:JC+Md2, where d=PC. Substituting this expression for J, and taking into



account that point P is the instantaneous centre of zero velocity and therefore wd =
@ PC =v_, where v, is the velocity of the centre of mass, we obtain finally

T, =imvilser (5.24)
2 2

plane

5.13. Work Done by a Force. Power. The concept of work is introduced as a
measure of the action of a force on a body in a given displacement, specifically that
action which is represented by the change in the magnitude of the velocity of a moving
particle.

First let us introduce the concept of elementary work done by a force in an
infinitesimal displacement ds. The elementary work done by a force F (Fig. 20) is
defined as a scalar quantity

dA = F.,ds, (5.25)
where F, is the projection of the force on the tangent to

the path in the direction of the displacement, and ds is
an infinitesimal displacement of the particle along that
tangent.

This definition corresponds to the concept of work as a
characteristic of that action of a force which tends to
change the magnitude of velocity. For if force F is

Fig.20.
resolved into components F, and F,, only the component . , which imparts the

particle its tangential acceleration, will change the magnitude of the velocity. Noting
that F. = F cosar, we further obtain from Eq. (5.25)

dA = Fdscosa . (5.26)

If angle o is acute, the work is of positive sense. In particular, at o=0, the
elementary work dA=Fds.

If angle a is obtuse, the work is of negative sense. In particular, at a=180°, the
elementary work dA=—Fds.

If angle a=90°, i.e., if a force is directed perpendicular to the displacement, the
elementary work done by the force is zero.

Let us now find an analytical expression for elementary
work. For this we resolve force F' into components F,, F), F,
parallel to the coordinate axes (Fig. 21). The infinitesimal
~ £ displacement MM'=ds is compounded of the displacements
i/ ' dx, dy, dz parallel to the coordinate axes, where x, y, z are the

2 ? coordinates of point M. The work done by force F in the

displacement ds can be calculated as the sum of the work

Fig.21. done by its components F,, F), I, in the displacements dx, dy,

dz. But the work in the displacement dx is done only by component F', and is equal to

F.dx. The work in the displacements dy and dz is calculated similarly. Thus, we finally
obtain

P4



dA=F.dx+F dy+F.dz. (5.27)

Eq. (5.27) gives the analytical expression of the elementary work done by a force.
The work done by a force in any finite displacement MyM; (see Fig. 20) is calculated
as the integral sum of the corresponding elementary works and is equal to

(M)
Ao = I F.ds. (5.28)
(M)
(M)
A(MOMI) = J-(dex + Fydy + FZdZ). (5.29)

(M)

The limits of the integral correspond to the values of the variables of integration at
points M, and M;, (or, more exactly, the integral is taken along the curve M;M, i.e., it
18 curvilinear).

In order to solve the principal problem of dynamics, it is important to establish the
forces whose work can be calculated immediately without knowing the equation of
motion of the particle on which they are acting. It can be seen that to these forces
belong only constant forces or forces which depend on the position (coordinates) of a
moving particle.

Without knowing the equation of motion of the particle, 1. e., without first solving
the principal problem of dynamics, the work done by such forces cannot be
determined.

Power. The term power is defined as the work done by a force in a unit of time (the

time rate of doing work). If work is done at a constant rate, the power
w=2
tl
where ¢, is the time in which the work A is done. In the general case,
W = d—A = FTdS = FT
dt dt
It can be seen from the equation W = F,v that if a motor has a given power W, the

V.

tractive force F, is inversely proportional to the velocity v. That is why, for instance,

on an upgrade or poor road a motor car goes into lower gear, thereby reducing the
speed and developing a greater tractive force with the same power.

5.14. Examples of Calculation of Work. The examples considered below give
results which can be used immediately in solving problems.

1) Work Done by a Gravitational Force. Let a particle M subjected to a gravitational
force P be moving from a point My(xy,ys20) to a point M;(x;y;,z;). Choose a
coordinate system so that the axis Oz would point vertically up (Fig. 22). Then P,=0,
P,=0, P,=—P. Substituting these expressions into Eq. (5.29) and taking into account
that the integration variable is z, we obtain



(M) 7
A = j(—sz) =— dez = P(z,-2,).
(M) 2

If point M, is higher than M, then zo — z,=h,

S where h is the vertical displacement of the
o (-}‘o z, 5 particle; if, on the other hand, M,, is below M,
Tl ' then z0—z;=—(z,—z9)=—nh. Finally we have
/% % A,y =EPh.
Fig.22. The work is positive if the initial point is higher

than the final one and negative if it is lower.

It follows from this that the work done by gravity does not depend on the path along
which the point of its application moves. Forces possessing this property are called
conservative forces.

2) Work Done by an Elastic Force. Consider a weight M lying in a horizontal plane
and attached to the free end of a spring (Fig. 23). Let point O on the plane represent

the position of the end of the spring when it is not in

l > tension (AO =l is the length of the unextended spring)
m<—~b 4 and let it be the origin of our coordinate system.
/{/f\/\/\/\/\,'\ﬂp%éq- LA rNow if we draw the weight from its position of

T 7 equilibrium 0, stretching the spring to length [, acting

on the weight will be the elastic force of the spring F

d 2, 7% wdirected towards 0. According to Hooke's Law, the
0 7—*magnitude of this force is proportional to the extension
of the spring Al
Fig.23.

=I—Iy. As in our case Al=x, then in magnitude F = c|Al| = d+|.

The factor c is called the stiffness of the spring, or the spring constant. Let us find
the work done by the elastic force in the displacement of the weight from position
My(xy) to position M;(x;). As in this case F\=—F=—cx, Fy=F,=0, then, substituting

these expressions into Eq. (5.29), we obtain
(M) 4

C
Ay = v|‘(—C)C)dx = —cJ-xdx = E(xoz _ x12) '
(My) X

In the obtained formula x, is the initial extension of the spring 4/ , and x; is the final
extension Al;,. Hence

&
Aoy = E[(Azm)2 — (AL,

)

the position of equilibrium, and negative when,

, 1.e., when the end of the spring moves towards

Al [

The work is positive if |7,

Alg,

Al ﬂn‘ 1.e., when the end of the

spring moves away from the position of equilibrium.



It follows, therefore, that the work done by the force F depends only on the quantities
Al, and Al,, and does not depend on the actual path traveled by M. Consequently,an

elastic force is also a conservative force.

3) Work Done by Friction. Consider a particle moving on a rough surface (Fig. 24) or
a rough curve. The magnitude of the frictional force acting on the particle is fN, where
{ f is the coefficient of friction and N is the normal
reaction of the surface. Frictional force is directed
opposite to the displacement of the particle, whence Fj,,
=—1N, and from Eq. (5.28),

(My) (My)
Awipy =~ J.Ff,dsz— IﬂVdS
(Mp) (My)
Fig.24.
If the frictional force is constant, then, A, ,  =-F,s where s is the length of the arc

MM, along which the particle moves. Thus, the work done by kinetic friction is
always negative. It depends on the length of the arc MyM; and consequently it is non-
conservative.

4) Work Done by Gravitational Forces Acting on a System. The work done by a
gravitational force acting on a particle of weight p, will be p,(z,,— zx;) where z;, and
7 are the coordinates of the initial and final positions of the particle . Then the total
work done by all the gravitational forces acting on a system will be

A= zpkzko _zpkzkl = P(2co = 2¢)) =%Ph,
where P is the weight of the system, and A is the vertical displacement of the centre
of gravity (or centre of mass) of the system.

5) Work Done by Forces Applied to a Rotating Body. The elemental work done by
the force F applied to the body in Fig. 25 will be

dA =Fds =Fhdo
since ds = hd@, where dg is the angle of rotation of the
body.

But it is evident that F A = m,(F ). We shall call the

quantity M, = m,( F ) the turning moment, or torque. Thus
we obtain

dA = Mdg. (5.30)

Fig.25.
Eq. (5.30) is valid when several forces are acting, if it is assumed that M_=>"m_(F,).

The work done in a turn through a finite angle ¢ will be

@l
A=[Mzdp. (5.31)
0



and, for a constant torque (M, = const.),
A=M.,qp,. (5.32)
If acting on a body is a force couple lying in a plane normal to Oz, then, evidently,
M. in Egs. (5.30)-(5.32) will denote the moment of that couple.
Let us see how power is determined in this case. From Eq. (5.30) we find
_dA M do
Cdr di
6) Work Done by Frictional Forces Acting on a Rolling Body. A wheel of radius R
rolling without slipping on a plane (surface) is subjected to the action of a frictional

force F,, which prevents the slipping of the point of contact

=M. w.

B on the surface.
The elemental work done by this force is dA = -Fjdsg. But
point B is the instantaneous centre of velocity , and v, = 0.

As dsg = v,dt, dsp = 0, and for every elemental displacement
dA=0.

Thus, in rolling without slipping, the work done by the
frictional force preventing slipping is zero in any
displacement of the body. For the same reason, the work done
by the normal reaction N is also zero.

Fig.26.
The resistance to rolling is created by the couple (N, P ) of moment M = kN, where
k 1s the coefficient of rolling friction . Then by Eq. (5.30), and taking into account that

the angle of rotation of a rolling wheel is dg = d%c

dA = —kNdp = —%Ndsc (5.33)

roll

where dsc i1s the elemental displacement of the centre C of the wheel. If N = const.,
then the total work done by the forces resisting rolling will be

A

= kN, = —%Nsc . (5.34)
5.15. Theorem of the Change in the Kinetic Energy of a Particle. Consider a
particle of mass m displaced by acting forces from a position M, where its velocity is
V,, to position M; where its velocity is v, .
To obtain the required relation, consider the equation msz:Zﬁk , which expresses
the fundamental law of dynamics. Projecting both parts of this equation on the tangent
M _ to the path of the particle in the direction of motion, we obtain m w,= 2 F,

The tangential acceleration in the left side of the equation can be written in the form

w, = v _dvds zﬂv, hence we have mv%” = D F,.
dt dsdt ds ds

Multiplying both sides of the equation by ds, bring m under the differential sign.



Then, noting that Fyds=dA;, where dA, is the elementary work done by the force F,,

we obtain an expression of the theorem of the change in kinetic energy in differential
form:

d(’"Tvzj =Y dA, . (5.35)

Integrating both sides of Eq. (5.35) in the limits between the corresponding values of
the variables at points M, and M, we finally obtain

2 2
my,”  my,
-——=) A,. .
5 5 Ek . (5.36)

Eq. (5.36) states the theorem of the change in the kinetic energy of a particle in the
final form: the change in the kinetic energy of a particle in any displacement is equal
to the algebraic sum of the work done by all the forces' acting on the particle in the
same displacement.

The Case of Constrained Motion. If the motion of a particle is constrained, then,
from, the left side of Eq. (5.36) will include the work done by the given (active) forces
F.“ and the work done by the reaction force of the constraint. Let us limit ourselves to

the case of a particle moving on a fixed smooth (frictionless) surface or curve. In this
case the reaction N is normal to the path of the particle, and N,=0. Then by Eq. (5.28),
the work done by the reaction force of a fixed smooth surface (or curve) in any
displacement of a particle is zero, and from Eq. (5.36) we obtain

2 2

Thus, in a displacement of a particle on a fixed smooth surface (or curve) the change
in the kinetic energy of the particle is equal to the sum of the work done in this
displacement by the active forces applied to that particle.

If the surface, (curve) is not smooth, the work done by frictional force will be added
to the work done by the active forces.

5.16. Theorem of the Change in the Kinetic Energy of a System. The theorem
proved in § 5.15 is valid for any point of a system. Therefore, if we take any particle
of mass my and velocity v, belonging to a system, we have for this particle

mkal _ mkaO
2 2
where v,, and v,, denote the particle's velocity at the beginning and the end of the

= Al +A]

displacement, and A; and A;are the sums of the work done by all the external and

internal forces acting on the particle through this displacement.
If we write similar equations for all the particles of a system and add them up, we
obtain



kavlfl _kav/fo :ZAe +ZA; or
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T,-T, =Y A"+ A/ (5.37)

where 7, and 7, denote the kinetic energy of the system at the beginning and the end

of the displacement.

This equation states the following theorem of the change in kinetic energy: The
change in the kinetic energy of a system during any displacement is equal to the sum
of the work done by all the external and internal forces acting on the system in that
displacement.

For an infinitesimal displacement of a the system
theorem takes the form _
dT =dA® - dA’ (5.38)

where dA® and dA' denote the elemental work done
by all the external and internal forces acting on the
system.

Fig.27. Unlike the previously proved theorems, in Egs. (5.37)
and (5.38) the internal forces are not ignored. For, if F, and F; are the forces of

interaction between points B; and B,, of a system (see Fig. 27), then F/+ F) =0, but at
the same time point B; may be moving towards B, and point B,, towards B;. The work
done by each force is positive, and the total work will not be zero.

The Case of Non-Deformable Systems. A non-deformable system is defined as one in
which the distance between the points of application of the internal forces does not
change during the motion of the system. Special cases of such systems are a rigid body
and an inextensible string. Let two points B; and B, of a non-deformable system (Fig.
27) be acting on each other with forces F, and F), (F.=-F))) and let their velocities at
some instant be v, and v, Their displacements in a time interval dt will be ds; = v,dt
and ds, = v,dt directed along vectors v, and v,. But as line B;B, is non-deformable, it
follows from the laws of kinematics that the projections of vectors v, and v, and
consequently of the displacements ds; and ds, on the direction of B;B, will be equal,
i.e., B;B; =B;B;. Then the elemental work done by forces F and F;, will be equal in
magnitude and opposite in sense, and their sum will be zero. This holds for all internal
forces in any displacement of a system.

We conclude from this that the sum of the work done by all the internal forces of a

non-deformable system is zero, and Eq. (5.37) takes the form
T,-T, =Y A (5.39)

Both the external and internal forces in Egs. (5.37)-(5.39) include the reactions of
constraints. If the constraints on which the bodies of a system move are smooth, then
the work done by the reactions of these constraints in any displacement of the system
1s zero and the reactions will not enter into Eqs (5.37)-(5.39).

Thus in applying the theorem of the change in kinetic energy to frictionless systems,



all the immediately unknown reactions of the constraints will be excluded from the
problem. This is where its practical value lies.

6. THE PRINCIPLES OF DYNAMICS

6.1. D'Alembert's Principle for a Particle and a System. Consider a particle M
moving along a given fixed curve or surface (Fig. 28). The resultant of all the active
forces applied to the particle is denoted by the symbol F¢. If the action of the
constraint is replaced by its reaction N, the particle can be considered as a free one
moving under the action of forces F* and N. Let us see what force F’ should be
added to the forces F* and N to balance them. If the resultant of the forces F* and N
is R, then, obviously, the required force F' = —R.

Let us express force F' in terms of the acceleration of the moving particle. As,
according to the fundamental law of dynamics, R = mw, F' = —m.

The force F' , equal in magnitude to the product of the mass of the particle and its
acceleration and directed oppositely to the acceleration, is called
the inertia force of the particle M.

Thus, if to the forces F¢ and N is added the inertia force F', the
. forces will be balanced, and we will have

F'+N+F =0. (6.1)
This equation states D'Alembert's principle for a particle: if at
Fig.28. any given moment to the active forces and the reactions of the

constraints acting on a particle is added the inertia force, the resultant force system
will be in equilibrium and all the equations of statics will apply to it.

D'Alembert’s principle provides a method of solving problems of dynamics by
developing equations of motion in the form of equations of equilibrium.

In applying D'Alembert's principle it should always be remembered that actually
only forces F* and N are acting on a particle and that the particle is in motion. The
inertia force does not act on a moving particle and the concept is introduced for the
sole purpose of developing equations of dynamics with the help of the simpler
methods of statics.

D'Alembert's Principle for a System. Consider a system of n particles. Let us select
any particle of mass m; and denote the resultants of all the external and internal forces
applied to it by the symbols F* and F™. If we add to these forces the inertia force

F} =-m,w, then according to D'Alembert's principle for a single particle the force
system F&,F™,F will be in equilibrium, and consequently,
FX+FM"+F =0.
Reasoning similarly for all the particles of the system, we arrive at the following
result, which expresses D'Alembert's principle for a system: If at any moment of time



to the effective external and internal forces acting on every particle of a system are
added the respective inertia forces, the resultant force system will be in equilibrium
and all the equations of statics will apply to it.

We know from statics that the geometrical sum of balanced forces and the sum of
their moments with respect to any centre O are zero; we know, further, from the
principle of solidification, that this holds good not only for forces acting on a rigid
body, but for any deformable system. Thus, according to D'Alembert's principle, we
must have

> (Fee + R+ F),
Z[ﬁio () + it (FI™) + 11y (7).
Let us introduce the following notation:
R =SF M= Y.
The quantities R'and M/ are respectively the principal vector of the inertia forces and
their principal moment with respect to a centre 0. Taking into account that the sum of
the internal forces and the sum of their moments are each zero we obtain
DEMHR =0, D i (F)+My=0. (6.2)

Use of Egs. (6.2), which follow from D'Alembert's principle, simplifies the process
of problem solution because the equations do not contain the internal forces. Actually
Egs. (6.2) are equivalent to the equations expressing the theorems of the change in the

momentum and the total angular momentum of a system, differing from them only in
form.

6.2. The Principal Vector and the Principal Moment of the Inertia Forces of a
Rigid Body. It follows from the Statics that a system of inertia forces applied to a
rigid body can be replaced by a single force equal to R'and applied at the centre 0, and
a couple of moment M/.The principal vector of a system, it will be recalled, does not

depend on the centre of reduction and can be computed at once. As F/ =-m,w, then

taking into account §5.3, we will have:
R' ==>"mw, =—Mw,. (6.3)

Thus, the principal vector of the inertia forces of a moving body is equal to the
product of the mass of the body and the acceleration of its centre of mass, and is
opposite in direction to the acceleration.

Let us determine the principal moment of the inertia forces for particular types of
motion.

1. Translatory Motion. In this case a body has no rotation about its centre of mass C,
from which we conclude that }" i, (F)=0, and Eq. (6.2) gives M;= 0.

Thus, in translatory motion, the inertia forces of a rigid body can be reduced to a
single resultant R’ through the centre of mass of the body.

2. Plane Motion. Let a body have a plane of symmetry, and

let it be moving parallel to the plane. By virtue of symmetry, the principal vector and



¥ the resultant couple of inertia forces lie, together with the centre
of mass C, in that plane.
Therefore, placing the centre of reduction in point C, we obtain
from Eq. (6.2) M/ = —Z me(F&). On the other hand (see §
. 5.9,5.10), > m.(F")=J.e. We conclude from this that
Z

Fig.29.
M. =-J.€. (6.4)
Thus, in such motion a system of inertia forces can be reduced to a resultant force
R' [Eq. (6.3)I applied at the centre of mass C (Fig. 29) and a couple in the plane of
symmetry of the body whose moment is given by Eq. (6.4). The minus sign shows that
the moment M is in the opposite direction of the angular acceleration of the body.

3. Rotation about an Axis through the Centre of Mass. Let a body have a plane of
symmetry, and let the axis of rotation C, be normal to the plane through the centre of
mass. This case will thus be a particular case of the previous motion. But here w, =0,

and consequently, R'=0.
Thus, in this case a system of inertia forces can be reduced to a couple in the plane
of symmetry of the body of moment
M!=-J¢.
In applying Egs. (6.3) and (6.4) to problem solutions, the magnitudes of the
respective quantities are computed and the directions are shown in a diagram.

6.3. Virtual Displacements of a System. Degrees of Freedom. In determining the
equilibrium conditions of a system by the methods of so-called graphical statics we
had to consider the equilibrium of every body separately, replacing the action of all
applied constraints by the unknown reaction forces. When the number of bodies in a
system is large, this method becomes cumbersome, involving the solution of a large
number of equations with many unknown quantities.

Now we shall make use of a number of kinematical and dynamical concepts to
investigate a more general method for the solution of problems of statics, which makes
it possible to determine at once, the equilibrium conditions for any mechanical system.
The basic difference between this method and the methods of geometrical statics is
that the action of constraints is taken into account not by introducing the reaction
forces but by investigating the possible displacements of a system if its equilibrium
were disturbed. These displacements are known in
mechanics by the name of virtual displacements.

Virtual displacements of the particles of a system
must satisfy two conditions: 1) they must be
infinitesimal, since if a displacement is finite the
system will occupy a new configuration in which the
Fig.30. equilibrium conditions may be different; 2) they must




be consistent with the constraints of the system, as otherwise we should change the
character of the mechanical system under consideration. For instance, in the crankshaft
mechanism in Fig. 30, a displacement of the points of the crank OA into
configuration OA; cannot considered as a virtual displacement, as the equilibrium
conditions under the action of forces P and Q will be have changed. At the same time,
even an infinitesimal displacement of point B of the connecting rod along BD would
not be a virtual displacement: it would have been possible if the slides at B were
replaced by a rocker, i.e., if it were a different mechanism.

Thus, we shall define as a virtual displacement of a system the sum total of any
arbitrary infinitesimal displacements of the particles of the system consistent with all
the constraints acting on the system at the given instant. We shall denote the virtual
displacement of any point by an elementary vector Js in the direction of the
displacement.

In the most general case, the particles and bodies of a system may have a number of
different virtual displacements (not considering ds and —&s as being different). For
every system, however, depending on the type of constraints, we can specify a certain
number of independent virtual displacements such that any other virtual displacements
will be obtained as their geometrical sum. For example, a bead lying on a horizontal
plane can move in many directions on the plane. Nevertheless, any virtual displace-
ment 85 may be produced as the sum of two displacements s, and Js, along two
mutual perpendicular horizontal axes (s = Js, + s, ).

The number of possible mutually independent displacements of a system is called the
number of degrees of freedom of that system. Thus, a bead on a plane (regarded as a
particle) has two degrees of freedom. A crankshaft mechanism, evidently, has one
degree of freedom. A free particle has three degrees of freedom (three independent
displacements along mutually perpendicular axes). A free rigid body has six degrees
of freedom (three translatory displacements along orthogonal axes and three rotations
about those axes).

Ideal Constraints. 1f a particle has for a constraint a smooth surface the reaction N
of the constraint is normal to the surface and the elementary work done by the force N
in any virtual displacement of the particle is zero. It was shown that if we neglect
rolling friction, the sum of the work done by the reaction forces N and F, in any
virtual displacement of a rolling body is also zero. The internal forces of any non-
deformable system also possess this property.

Let us introduce the following notation: the elementary work done by an active force
F° in any virtual displacement 85 — the virtual work—shall be denoted by the
symbol A (dA“ = F* ds cos o, where a is the angle between the directions of the force
and the displacement), and the virtual work done by the reaction N of a constraint, by

the symbol 0A". Then for all the constraints considered here,
> ) =0. (6.5)

Constraints, in which the sum of the virtual work produced by all the reaction forces



in any virtual displacement of a system is zero, are called ideal constraints.

We have seen that to such constraints belong all frictionless constraints along which
a body slides and all rough constraints when a body rolls along them, neglecting
rolling friction.

6.4. The Principle of Virtual Work. Consider a system of material particles in
equilibrium under the action of the applied forces and constraints, assuming all the
constraints imposed on the system to be ideal. Let us take an arbitrary particle B, be-
longing to the system and denote the resultant of all the applied active forces (both
external and internal) by the symbol F?, and the resultant of all the reactions of the

constraints (also external and internal) by the symbol N,. Then, since point By is in
equilibrium together with the system, F* + N, =0 or N, =—F".
Consequently, in any virtual displacement of point B, the virtual work 0 A/ and

d A done by the forces F* and N, are equal in magnitude and opposite in sense and
therefore vanish, i.e., we have:
QA +0A)=0.
Reasoning in the same way we obtain similar equations for all the particles of a
system, adding which we obtain
YO A +X3A)=0.

But from the property of ideal constraints (6.5), the second summation is zero,

whence
Y347 =0, (6.6)
or
D (F8s, cosay)=0. (6.7)

We have thus proved that if a mechanical system with ideal constraints is in
equilibrium, the active forces applied to it satisfy the condition (6.6). The reverse is
also true, i.e., if the active forces satisfy the condition (6.6), the system is in
equilibrium. From this follows the principle of virtual work: the necessary and
sufficient conditions for the equilibrium of a system subjected to ideal constraints is
that the total virtual work done by all the active forces is equal to zero for any and all
virtual displacements consistent with the constraints. Mathematically the necessary
and sufficient condition for the equilibrium of any mechanical system is expressed by
Eq. (6.6).

In analytical form this condition can be expressed as follows:

Z(Fli&k"‘kaﬁyk"'FkZ&k):O- (6.8)

In Eq. (6.8) dx;, dyx, Ozx are the projections of the virtual displacements Js, of point

B; on the coordinate axes. They are equal to the infinitesimal increments to the
position coordinates of the point in its displacement and are computed in the same way
as the differentials of coordinates.



The principle of virtual work provides in general form the equilibrium conditions of
any mechanical system, whereas the methods of geometrical statics require the
consideration of the equilibrium of every body of the system separately. Furthermore,
application of the principle of virtual work requires that only the active forces be
considered and makes it possible to ignore all the unknown reactions of constraints,
when the constraints are ideal.

6.5. The General Equation of Dynamics. The principle of virtual work gives a
general method for solving problems of statics. On the other hand, D'Alembert's
principle makes it possible to employ the methods of statics in solving dynamical
problems. It seems obvious that by combining both these principles we can develop a
general method for the solution of problems of dynamics.

Consider a system of material particles subjected to ideal constraints. If we add to all

the particles subjected to active forces F* and the reaction forces N, the
corresponding inertia forces F;= —m,w,, then by D'Alembert's principle the resulting
force system will be in equilibrium. If we now apply the principle of virtual work, we

obtain
DAL+ A+ DAY =0.
But from Eq. (6.5) the last summation is zero, and we finally obtain
DA+ A =0. (6.9)
Equation (6.9) represents the general equation of dynamics. It states that in a moving
system with ideal constraints the total virtual work done by all the active forces and

all the inertia forces in any virtual displacement is zero at any instant.
In analytical form Eq. (6.9) gives

SE+ 7 s+ ), +(F +1)e, | (6.10)

Equation (6.9) and (6.10) make it possible to develop the equations of motion for
any mechanical system.

If a system consists of a number of rigid bodies, the relevant equations can be
developed if to the active forces applied to each body are added a force equal to the
principal vector of the inertia forces applied at any center, and a couple of moment
equal to the principal moment of the inertia forces with respect to that center. Then the
principle of virtual work can be used.
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